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Feynman path integral for the Dirac equation 

Rodolfo Sudrezt 
Universidad Aut6noma Metropolitana-Azcapotzalco, Area de Matemiticas, AV San Pablo 
No 180, Azcapotzalco, Apdo Postal 16-307, MCxico 16 DF 

Received 25 April 1983, in final form 26 September 1983 

Abstract. The evolution operator for the Dirac equation is expressed as a sequential 
Feynman path integral. The usual approximations in terms of integrals over finite- 
dimensional spaces have been explicitly calculated in this paper and written in terms of 
translation operators (see equation (20)). This expression should lend itself well to 
numerical approximations. 

1. Introduction 

In this paper we shall express, by means of a type of Feynman path integral, the 
solution of the Dirac differential equation 

with W ( 0 ,  x) = f (  x)  and where W is defined on R4 (time-space ( t ,  xl,  x2, x 3 ) )  with values 
in the spin space (TI, W2, W3, q4) E C4. The vector ( u l ,  u2, u 3 )  is proportional to the 
magnetic potential, 4 to the electric potential, and b to the rest mass. The a k  
( k  = 1,2 ,3) ,  /? = a4 are 4 X 4 Hermitian matrices which satisfy the relation 

aka'+ alak = 2ak'I for k,  j = 1,2 ,3 ,4 .  ( 2 )  
For a representation of the matrices ak,  p see e.g. Messiah (1965). 

We can construct the Feynman path integral in a similar form to the Wiener 
approximation scheme. We give an approximation to the integral over all the paths, 
y(  t ) ,  by the integral over the polygonal paths with corners ( fj, y (  f,)) where 0 = to < t l  < 
. . . < rf = s is a partition of the time interval (0 ,  s) ,  and we pass to the limit max(t,+, - 
t j )  + 0. In this approximation we deal with integrals over finite-dimensional spaces, 
instead of integrals over path spaces. 

We will define the approximations E ( x ,  T )  on S(R"), the Schwartz space of C" 
functions of rapid decrease, by 

(3) 
k E ( r 3  T)f(Y)=G(T-fk, Y)G(tk-tk-I, X ) .  . . G(tl-fo,  X ' ) f  

where x = {to,  t l ,  . . . , tll  is a partition of [0, SI, T E  ( t k ,  fk+l], f~ S(R") and 
3 

G(t, y ) f =  ( 2 ~ ) ~ ~  lR3 e- i4(y)r  e-ipbr fl exp[iakuk(y)t] 
k = l  

3 
X k = l  n exp(-iakpkf) e'P'Y-x'f(x) dx dp. (4) 

t This research was supported in part by CONACYT, Mexico. 
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Using a 
Z2( R3). 
for (I) ,  

limiting procedure, the Plancherel theorem, we extend these definitions to 
We shall go on to  prove that E (  T ,  T) converges in T2 to the evolution operator 
when E (  T )  = max( fj+l - t,) converges to zero, if 4, a, are bounded functions 

of class C'. 
The convergence of these integrals can be proved in various ways, for instance, 

using the Kato-Trotter formula or an approach similar to PliS (1976). The advantage 
of the proof in this paper is that a numerical approximation of the solution can be 
developed on the basis of equation (20). 

The original idea to develop an approximation to the evolution operator for the 
Dirac equation, by integrating only along the paths with the velocity of light, was 
conceived by R P Feynman himself in the one-dimensional case. Feynman's approxima- 
tion is different from ours, but our approximation is defined for the n-dimensional 
case and conserves the T2 norm (see the remark after lemma 3).  

In Albeverio and Hoegh-Krohn (1976) and Proc. Colloq. on Feynman Path 
Integrals (1979) there is an up to date bibliography about Feynman path integral. 

2. Notations and propositions 

If z E R", A c R" then /zI = maxlz,/ and 

B( Z, 7 )  = { w E R" ; I z - W I  < y } ,  B(A,  7 )  = U B( Z, 7 ) .  
Z E A  

If n = (n , ,  n2,  n3) ,  where nj are non-negative integer numbers, then In/ = n, +n,+ n3, 
and 

D"f = a1"lf/ax;lax;2ax;3 for x E [ w 3 .  

Let fl be an arbitrary open set in R3. We shall employ the usual notations for the 
function spaces, with domain fl and C4-valued: C"(R), C,"(R) (functions of class 
C" and compact support) and T2(fl) with norm 1 1  (I. Denote by H'"(R) the Sobolev 
space of order m on fl 

H"(R) = { f : R + C4 1 D"f E T2(fl), for all n, In 1 s m} ( 5 )  
with the norm 

For instance Ho(R) = Z2(fl) and we will denote 11 /lo by 11 I/. 
The Fourier-Plancherel transformation 9 is defined by 

9(f(x)) = f ( y )  = ( 2 = ) p 2  1.1 ePixYf (x)  dx for each y E R3. (7) 

We shall need the following known results (Maurin 1972). 

Proposition 1. The Fourier-Plancherel transformation is an isometry in T2 with inverse 

Proposition 2. If fi is a compact set, the natural embedding H'(R)+Hk(R),  is a 
compact map, for 1 > k. 
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By virtue of (2),  this is simple to prove. 

Proposition 3. The Dirac matrices a k ,  p satisfy 

exp(ia ' a )  = I cos a + ia sin a 

exp(iaka)a '  = a' exp(-iaka) 

In order to simplify the notation we need to define 

for k = 1 , 2 , 3 , 4 ;  a ER, 

forj, k = 1 , 2 , 3 , 4 ;  j #  k ;  a ER. 

3 

k = l  
X n exp( -ia kpkt)  eiP(y-x)f( x) dx dp, 

G2(t, y ) f = ( 2 ~ ) - ~  e - i + ( ~ ) f  eiPr exp[-ia al(  y)  t ]  

3 3 

X fl exp[iakak(y)t] fl exp(-iakpkt) eiP'Y-x'f(x) dx dp, 
k = 2  k = l  

L 

X n exp(iakpkt) exp(-ia3p3r) eiP(Y-x)f(x) dx dp. 
k = l  

If we change the sign in the first exponential matrix in G(t, y)  we obtain G'(t, y),  if 
we change the sign in the first and second we have G2, etc. 

3. Principal results 

It is well known that the evolution operator for the Dirac equation (1) conserves the 
T2 norm. The same is true for our approximations. 

Lemma 1. The operator E ( T ,  T )  is an isometry in T2, that is, 

lF(T = llfll for all f E Z2. 

Proof. On account of definition ( 3 ) ,  it is enough to prove 

IlG(t9 * )fll = llfll for all f E Z2. 

Now we have 
3 3 

G( t ,  Y)f = e - i d ( ~ ) t  e - 1 W  n exp[iakak(y)t]9-' n exp(-iakpkt)9(f(x))) 
k = l  ( k = l  

(14) 

and (13) follows from proposition 1. 

In Cr (R) we have the next result. 

Lemma 2. Suppose that 4, ak are bounded functions in C"(R) and have all derivatives 
up to order m bounded. Then there exists a constant K = K ( m ,  T ) ,  independent of 
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the partition T, such that K is continuous in T and 

llE(~7 7 ) f l l m  ~Kllf l lm for all f E C," (a). 

Proof, From ( lo) ,  ( l l ) ,  (14) and the well known properties of 9 we get 

and in similar manner we obtain 

D"G(t, y ) f =  G(t,  y)D"f+tW for all 1 s In1 s m, (17) 

where W is a sum of functions G'(t, y)Dqf, O S ( q l S  In/-1, multiplied by bounded 
functions. From (13) and (17) we find there exists a positive number C that depends 
on 4, ak, s and k,  such that 

I I G ( t ,  ' ) f l l k  l l f l l k  + Ctl l f l lk- l  for 1 s k s m. (18) 
Finally we have for T E (tk-I, t k ]  

IIE(T, T)fllm sIIE(T, t k - I ) f l l m + C ( T - t k - l ) I I E ( T ,  t k - l ) f l lm- l  

lIE(r9 tk-2)fllm + c(7- fk-2)(IE(T, fk-2)fllm-1 

+ c 2 ( T -  t k - l ) ( f k - l  - f k - 2 ) I I E ( T ~  fk-2)fllm-2 

* S  t I f I Im+C~I I f I Im-1+(C~)211f I Im-2+.  * *+(Cs)mIIfII* (19) 

Our approximation, as well as the evolution operator for the Dirac equation ( l ) ,  satisfy: 

Lemma 3. If f~ Y2(R3) has support contained in a, then E ( T ,  ~ ) f  has support 
contained in B(R, T ) ,  where T is in the time interval [0, s]. 

Proof, By means of (4), (8) and (9) we obtain 

where A = e- ld(Y)t  e-iPbt II:=, exp[iakak(y)r]. Thus G(t,  y)f has support contained in 
B(R, t )  andsinces=Z:=, (t,-fj-l)from(3),(20) theproofofthelemmaiscompleted. 
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Remark. We can develop (20) in another way 

G(t ,  Y)f=A lR3 ( k = l  fi (2TI- I  [-:exp(-iakPkt) exp[ipk(yk-xk)ldpk ) f (x )  dx 

3 

=BA jR3( n (ak)nk[S(yk-t-xk) 
O c n l , n 2 , n 3 s l  k = l  

-k (-1) "'8 ( Y k  -F t -  x k  11) f (x)  dx 

where S ( x )  is the Dirac delta function. Therefore, if we develop first the integral by 
p ,  we obtain the integral with respect to x but only for the paths with the velocity of 
light c (in this paper we consider the universal constants equal to one). This idea was 
considered by R P Feynman himself in the one-dimensional case (see Feynman and 
Hibbs 1965, Rosen 1975). The Feynman approximations are different from our 
approximation but ours are defined for n dimensions and conserve the 2'* norm. 

Lemma 4. Suppose 4, ak are bounded functions. Therefore we have 

G'( t, ) + I in operator norm as t + 0 (21) 
if j = 0 , 1 , .  . . , 6  where Gn = G and I is the identity operator in 5f2. 

Proof. We will prove the lemma only for G. Let f E C r  (R3), hence 

Il(G(t, *)-Of11 

hence we conclude under the assumption of boundedness of 4, ak 

IlG(t, * ) - I I I + O  when t + 0. 

Theorem 1. Suppose 4, ak and their first derivatives are bounded. Moreover, suppose 
there exists a sequence of partitions T,,, with E (  T,,) + 0, and an operator E (  T) such 
that for each f E CA (W3) 

IIE(Tfl, T)f - E (.)fll + 0 when E (  T,,) + 0 (24) 

uniformly on T E  [0, SI. Then E ( T )  is the evolution operator for (1).  
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Proof. From (4), (lo), ( l l ) ,  (14), (16) and the well known properties of 9, we get 

aG 
- ( t ,  y)f =-ipbG(t, y)f -i4(y)G(t, Y)f + i  

3 

akak(Y)Gk(t, Y)f 
a t  k = l  

af - ~ x ~ G ~ + ~ ( t , y ) -  
k = l  a x k  

af - akG(t,y)-+i akak(y) 
3 

k = l  a x k  k = i  

3 -it ak-G(t, a4 y ) f + i t  a k (  aiaa,G’(t, y)f)  
k - 1  ayk k = l  j=1  a y k  

af 
k = l  k = l  axk 

(25) 

Given rn ={to ,  . . . , tin}, there exists fk, such that T E ( t k n ,  fkn+l]. From (3)  and (25) we 
have obviously 

3 

+i  akak(y)[Gk(t,  y)f-G(t, y) f l -  ak[Gkf3(t ,  Y)-G(t, Y)]-. 

uniformly for T E [0, SI, where H is the right-hand side of equation (1). Interchanging 
the limit (27) and the differentiation we find that E(T) is the evolution operator for 
(l), and this completes the proof. 

We will prove our main result. 
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Theorem 2. Suppose that 4, ak are bounded functions in C2(R3) and have their first 
derivatives bounded. Then for each f in Y2(R3), the approximations E (  r,  ~ ) f  converge 
in 2* norm to E ( T ) ~ ,  uniformly for 7 E [0, SI, when E (  r )  = max( t j+ l  - t i )  converges to 
zero and where E ( T )  is the evolution operator for the Dirac equation (1). 

Proof, In virtue of lemma 1 it is enough to prove the convergence on a dense set of 
Y 2 ( R 3 ) .  Let f~ C: (R3) with support contained in n, compact. Under the assump- 
tions, we have from lemma 2 

llE(n T)fl l l  s Kllflll for all E > 0. 

The last inequality together with proposition 2 and lemma 3 imply that for each 
sequence of partitions {r,,}, such that ~ ( r , )  + 0, the set 

B = { E  ( r,, 7)f: n + 00) 

is relatively compact in P (B(~ ,  s)) for T E [ O ,  s]. 
From (26) we have that there exists a constant Y > 0, independent of n, such that 

l l ( J / ~ 7 ) ~ ( r f l ,  s Yllflll (28) 
for all T E [0, s], and from Ascoli’s theorem, there exists a subsequence E (  r , ( k ) ,  ~ ) f  
that converges uniformly on [0, s]. 

Finally, we know from theorem 1 and the uniqueness of the solution of the system 
(1) that all the convergent sequences in T2 norm of B have the same limit E ( T ) ~ ,  
This implies that E (  r,,, ~ ) f  is convergent in norm to E (  ~ ) f ,  uniformly on [0, s]. 
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